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The existence of more than one stationary point for certain parameter values is generally
considered to be a necessary condition of the emergence of oscillatory solutions for some
parameter values in reaction kinetics. Examples taken from both physics and chemical
kinetics show that the condition is neither necessary nor sufficient.

1. Introduction

The theory of reaction kinetics is full with tradition, beliefs, conjectures and
refutations. Let us mention just a few of them. Reversible reactions have a positive
stationary concentration (true [28]), they only have one (false [7]). “Closed sytems tend
to equilibrium” – if this statement is meant to mean that reversible detailed balanced
reactions have a single, locally relatively asymptotically stable stationary point, then
it is true [17,31,35] and has also been generalized to the case of complex balanced
reactions [13,14,19,20]. Autocatalytic, autoinhibitory, or enzymatic steps are needed
to obtain oscillatory reactions [2,23], false [22], cf. also [29]. Feed-back is needed to
oscillation [5]. (It was even possible to produce chaos with mono- and bimolecular
steps without autocatalysis [24].) A more detailed account of history from this aspect
can be found in [11, section 4.2].

In this short note we consider the statement (or, rather, conjecture) according to
which multistationarity is a necessary or sufficient condition of oscillation in complex
chemical reactions [3,6,10]. More precisely, the assertion is that in order to have
periodic solutions in a complex chemical reaction at some values of the parameters, the
reaction must have more than one stationary point for some values of the parameters.
The majority of model reactions (as, e.g., the Autocatalator, the Ivanova reaction,
the Lotka–Volterra reaction, the Oregonator) have this property. What is more, real
chemical systems with oscillatory behavior also share this property and they have
partly been designed using this conjecture [9,30]. (Although the reaction of chlorite
with thiocyanate exhibits oscillations without known bistability so far [1], and the
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ferroin-bromate system has been shown to produce bistability and no oscillation until
no bromide was added [16].)

As Li and Wu put it [26]: “. . . cross-shaped phase diagram analysis . . . which
starts with a search for bistable systems has played an essential role.”

The debate about the Explodator [12,15,21,27] also focused on this conjecture:
those against this model argued that the Explodator not being able to show bistability
is not a viable model of any oscillatory reaction that exhibits bistability which includes
nearly all of the presently known. The other party showed that the Explodator does
show bistability at certain parameter values.

We shall present examples here to show that without additional requirements the
statement in question is false in general, and we also show that the condition is not
sufficient either. Finally, we also show that existence of a periodic solution in the
given cases is a simple consequence of Poincaré–Bendixson theory.

2. Necessity

To investigate necessity let us start with the simple (nonkinetic) example of the
harmonic oscillator:

ẋ = ωy, ẏ = −ωx.

This equation obviously has a periodic solution (for all initial values and) for all values
of the parameter ω. It is also true that at a certain parameter value (namely, at ω = 0)
it shows multistationarity, because in this case all the points of the phase space turn
out to be stationary points.

Modifying the example a bit, we obtain

ẋ =
(
1 + ω2)y, ẏ = −

(
1 + ω2)x.

This equation again has a periodic solution (for all initial values and) for all values of
the parameter ω. Furthermore, it only has a single stationary point (0, 0), no matter
what the value of the parameter ω is.

Obviously, none of the two models above are kinetic because y is not directly
involved in its own removal: the models contain negative cross-effect (see, e.g., [32,33]
and the references therein). Still, the same trick will also help to construct kinetic
models of a similar structure. Let us consider the reaction

A → X , X + Z → B, Y → Y + Z,

X → X + Y , Y +W → C, D →W ,

constructed by Dancsó and Farkas as a simple chemical realization of the harmonic
oscillator [4]. A dimensionless form of its induced kinetic differential equation is

ẋ= a(1− xz), ẏ = b(x− yw),

ż= c(y − xz), ẇ = d(1− yw).
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This equation (having oscillatory solutions) again has the property that for some values
of the parameters (namely for a = b = c = d = 0) it has more than one stationary
point.

However, reparametrizing the equations in the same way as above we obtain

ẋ=
(
1 + α2)(1− xz), ẏ =

(
1 + β2)(x− yw),

ż=
(
1 + γ2)(y − xz), ẇ =

(
1 + δ2)(1− yw),

a counterexample, having the single stationary point (1, 1, 1, 1).
A less trivial, more chemical exmple can be created from the two-variable model

of the chlorite iodide malonic acid (CIMA, for short) reaction [25]:

ẋ = k1 − k2x− 4k3
xy

u+ x2 , ẏ = k2x− k3
xy

u+ x2 ,

if one puts ki := 1 + ω2
i (i = 1, 2, 3) and u := 1 + Ω2. Obviously, the single stationary

point is

x∗ =
1 + ω2

1

5(1 + ω2
2)

, y∗ =
1 + ω2

2

1 + ω2
3

(
1 + Ω2 +

(
1 + ω2

1

5(1 + ω2
2)

)2)
.

3. Sufficiency

Multistationarity alone is not sufficient to imply oscillation either. This is trivially
true for one-dimensional systems as they cannot oscillate although they can have any
number of stationary points.

However, an artificial example like the induced kinetic differential equation

ẋ = (x− a)(x− b)y, ẏ = x(y − c)(y − d)

of the reaction

2X + Y 1→ 3X , X + 2Y 1→ 3Y ,

A+ Y ab→ X + Y a+b→ Y + B,

A+ X cd→ X + Y c+d→ X + B

shows that even a system with five stationary states can do without being oscillatory:
all the coordinates of all the nonconstant solutions are always strictly monotonous in
this case.

4. Closing remarks

Finally, let us mention that in the case investigated by Li and Wu [26] the single
stationary state is not only unstable, but it is also a source, an unstable stationary point
with the real parts of all the eigenvalues being positive numbers. This makes it possible
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to define an annulus on the phase plane such that the trajectories come into this both
from the part of the state space outside the annulus and from the neighborhood of
the unstable stationary state. Thus, standard application of the Poincaré–Bendixson
theory [18, p. 247] implies the existence of a periodic solution in this case without
any reference to multistationarity.

An analogous new and interesting (heuristically founded) conjecture to the one
treated here has been put forward by Li and Wu [26]: A complex chemical reaction
showing bistationarity when completely stirred (i.e., under homogeneous conditions)
might be able to produce spatial patterns when diffusion is taken into consideration.
We cannot either prove or disprove this statement at the moment. However, we
have been able to prove (and extend in some sense) the seemingly obvious statement
that nonlinearity is a necessary condition of the appearance of Turing structures [32].
(Thus we also contributed to the clarification of the statement by Epstein [8] saying
that “Turing . . . showed that a sufficiently nonlinear set of reaction kinetics coupled to
diffusion could give rise to pattern formation . . . ”; false, Turing constructed a linear,
nonkinetic example in his seminal paper [34].)

Summary and conclusion of the story by a self-content mathematician would be:
These chemical physicist guys simply used a nonexistent theorem. A more modest
mathematician’s summary might be: The strong relation between this nonexistent the-
orem and both experimental and model results should force us to look behind the
new idea (“from bistability to spatial patterns”) and try to prove or disprove it, or
try to add some further conditions under which the statement will become true in the
mathematical sense too.
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